Advanced ML: Unsupervised Learning & Production
Advanced ML: Unsupervised Learning & Production
Master advanced machine learning techniques including unsupervised learning, neural networks fundamentals, and production deployment. Build production-ready ML systems with modern MLOps practices.
Learning Objectives
- Master unsupervised learning: clustering, dimensionality reduction, anomaly detection
- Understand neural network fundamentals and deep learning basics
- Learn time series analysis and reinforcement learning intro
- Deploy ML models to production with proper infrastructure
- Implement MLOps best practices: monitoring, versioning, pipelines
- Optimize models for production: quantization, pruning, distillation
- Handle data drift, A/B testing, and model debugging
- Build scalable ML serving infrastructure
Интерактивные инструменты в этом курсе
Осваивайте концепции через практическое изучение
Loading tool...
Click to InteractExplore
🔮
Clustering Visualizer
interactiveInteractive visualization of K-Means, DBSCAN, and Hierarchical clustering algorithms
Explore Full Tool
Loading tool...
Click to InteractExplore
Loading tool...
Click to InteractExplore
📊
Graph Plotter
visualizationInteractive plotting tool for visualizing data and relationships
Explore Full Tool