Advanced ML: Unsupervised Learning & Production

Master advanced machine learning techniques including unsupervised learning, neural networks fundamentals, and production deployment. Build production-ready ML systems with modern MLOps practices.

Learning Objectives

  • Master unsupervised learning: clustering, dimensionality reduction, anomaly detection
  • Understand neural network fundamentals and deep learning basics
  • Learn time series analysis and reinforcement learning intro
  • Deploy ML models to production with proper infrastructure
  • Implement MLOps best practices: monitoring, versioning, pipelines
  • Optimize models for production: quantization, pruning, distillation
  • Handle data drift, A/B testing, and model debugging
  • Build scalable ML serving infrastructure

Интерактивные инструменты в этом курсе

Осваивайте концепции через практическое изучение

🔮

Clustering Visualizer

interactive

Interactive visualization of K-Means, DBSCAN, and Hierarchical clustering algorithms

Explore Full Tool
🐍

Python Code Executor

code-execution

Interactive Python code execution environment

Explore Full Tool
📊

Graph Plotter

visualization

Interactive plotting tool for visualizing data and relationships

Explore Full Tool

Course Content